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To maintain ultra-low particle concentrations, cleanrooms can require several hundred air changes per
hour. These ventilation rates make cleanrooms 30-50 times more energy intensive than the average U.S.
commercial building. There are an estimated 12 million m? of cleanroom space in the U.S., consuming
over 370 PJ] of energy each year. This paper explores opportunities to improve the energy efficiency of
cleanrooms while maintaining or improving operating conditions.

Keywordsf‘h . This paper documents the modeling of a 1600 m? cleanroom in upstate New York. The TRNSYS model
E?:;fﬁ'ozmzlency includes TMY2 weather data; building geometry and material properties; empirical data on occupancy,

lighting and process equipment; and sophisticated HVAC systems. The model was validated based on
metered steam, chilled water and electricity usage. Under 8% error was achieved in all fields.

Four strategies were simulated: a heat recovery system for exhaust air, resulting in an 11.4% energy
reduction with a 2.7-year simple payback; solar preheating of desiccant dehumidifier regeneration air
(2.4% energy reduction, 11.5-year payback); improved lighting controls (0.3% energy reduction, 1.5-year
payback); and demand-controlled filtration (4.4% energy reduction, 3.1-year payback). Implementation

Building simulation
Demand-controlled filtration

of recommended strategies is predicted to save 9 TJ, 862 tonnes of CO,, and $164k annually.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Buildings contribute one third of global energy use and carbon
dioxide emissions [1]. Cleanrooms, which can require several
hundred air changes per hour through High Efficiency Particulate
Air (HEPA) and Ultra Low Particulate Air (ULPA) filters to maintain
low particle concentrations, are 30-50 times more energy
intensive than a typical commercial building [2,3]. In 1993, the
4.2 million m? of U.S. cleanroom space consumed 130 PJ of energy;
by 2015 these figures are expected to grow to 15.5 million m? and
470 PJ, respectively [4]. The potential for energy and carbon
savings in cleanrooms is commensurate with the magnitude of
their energy consumption.

Methods for cleanroom design and analysis were outlined by
Thomas in 2005 [7], while Mills et al. presented the economic
motivations for cleanroom energy efficiency in 2008 [8]. Tschudi
et al. have recommended best practices for cleanroom design and
operation [9], performed benchmarking surveys of U.S. cleanrooms
[10], and outlined a means of using cleanroom benchmarking data
to identify energy efficiency opportunities [11]. A benchmarking
report on the cleanroom studied herein was performed by Mathew
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et al. in 2008 [12], identifying two of the energy efficiency
opportunities explored in this paper.

In an effort to explore cleanroom energy efficiency strategies, the
authors undertook a modeling and simulation study of a 6600 m?
nanoscience facility. The facility was selected due to its 1600 m?
Class 1000 cleanroom, high energy budget ($1.8 million in 2008),
and comprehensive online monitoring system, which facilitated
development and validation of the building model. The building
consumes energy from three sources: electricity, either generated
on campus or purchased from the grid; chilled water from a lake-
source cooling system [5], and steam produced at a combined heat
and power plant on campus [6]. Fig. 1 shows the building’s
electricity, chilled water and steam use by sector, according to 2008
metered data. This study focuses on the cleanroom, hereafter
referred to as DHC, which consumes the majority of all three utilities.

2. Methods
2.1. Model details

In order to predict the efficacy of energy efficiency strategies, a
model of DHC envelope and HVAC system was developed using
TRNSYS, a transient system simulation software [13]. This software
was selected due to its sophistication in dealing with complex
HVAC systems, as well as the available libraries for modeling such
nontraditional HVAC strategies as solar thermal heating. TRNSYS
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Fig. 1. Consumption of electricity, chilled water and steam by the three main
building sectors.

allows the interconnection of HVAC components (either user-
defined or chosen from standard libraries), and solves the resulting
simultaneous system of differential and algebraic equations [14].
Fig. 2 shows the basic inputs and outputs of a TRNSYS simulation.
One input to the model is a Typical Meteorological Year Version 2
(TMY2)file, which was obtained from the National Renewable Energy
Laboratory (NREL) database [15] and contains such data as dry bulb
temperature, relative humidity (RH), wind speed and incident solar
radiation. The remaining inputs to the model, namely building
geometry and material properties, HVAC systems, occupancy,
lighting, and equipment are presented in the following sections.

2.1.1. Building envelope
A model of DHC geometry was developed based on
construction documents and CAD files. Because this study

Building Geometry
and Thermal —
Properties

focused on the cleanroom, the rest of the building envelope
(laboratories, atrium, and offices) was not modeled. Rather, DHC
zones were considered to be adjacent to thermal reservoirs at a
constant temperature of 20°C, the setpoint to which the
building’s HVAC systems control hallway temperatures.
Table 1 describes the thermophysical properties of the modeled
wall materials.

2.1.2. HVAC system

The DHC HVAC system includes a makeup air handling unit
(MAU), which filters and controls the dewpoint temperature
of 1500 m3/min of air at 6.4 °C. Conditioned air is then sent to
the service area, where 25 recirculation air handling units
(RAHU) re-filter and control the temperature of DHC air at 20 °C.
Two fans then remove exhaust air from DHC gas cabinets
and fume hoods. Positive pressure is maintained between
MAU and the exhaust fans in order to prevent undesired
infiltration. Fig. 3 shows the basic operation of the HVAC
system.

Each HVAC unit was modeled based on data taken from the
building’s monitoring system. Figs. 4 and 5 compare the TRNSYS
model and monitoring system representation of MAU. The TRNSYS
model includes the MAU control logic and setpoints.

2.1.3. Occupancy

Occupancy schedules were developed based on empirical data
taken by campus facilities staff. Table 2 shows the hourly
probability of DHC occupancy by at least one person. This data

was used in modeling lighting and ventilation controls, as well as
internal thermal gains.

2.1.4. Lighting and equipment
Since data was unavailable for precise lighting and equipment
specifications in DHC, such as peak power consumption and daily
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Fig. 2. Inputs and outputs of a generic TRNSYS building simulation.
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Fig. 3. Flow chart of the current DHC HVAC system.

Table 1

Thermophysical properties of DHC wall materials.
Material Conductivity Specific Heat Density

(kJ/h-m-K) Capacity (kJ/kg-K) (kg/m3)

Fiberglass 0.171 0.840 12.0
Gypsum 0.580 1.090 850
Vapor barrier - - Massless
Concrete 4.720 0.880 2,242
Particle board 0.125 1.250 1,000
Air space 1.129 1.020 1.20
Roof insulation 0.190 0.840 12.0
Roof membrane - - Massless
Acoustic ceiling 0.206 1.250 288.3

load profiles, lighting and equipment demands were approximated
as constant. Metered monthly values led to a mean equipment
power intensity of 34.65 W/ft? (372.8 W/m?) and lighting intensity
of 1.53 W/ft? (16.5 W/m?).

Normal

579
58.0

Running

66.2

2.2. Model validation

Once developed, the model was checked against metered data
from 2008. Although the model was quite complex, the simulated
utility consumption agreed well with the metered data. Table 3
compares metered and simulated consumption values for each of
the three utilities. Error was computed by the following formula:
&=(M — S)/M, where ¢ is the calculated error, M is the metered
annual utility consumption, and S is the simulated annual utility
consumption.

Multiple sources of error are present in building simulations.
The most obvious is variation between the TMY2 dataset and the
actual 2008 weather conditions. TMY2 data is compiled by
selecting, for each month, the “most typical” month from the
years 1961-1990 [15]. Thus, any aberrations from typical
conditions that were experienced in the metered year introduced
simulation error. Other errors may have been introduced by

Fig. 4. Building monitoring system representation of MAU.
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Fig. 5. TRNSYS model of MAU.

uncertainty in measurements of lighting, heating gains from
process equipment and occupants, and thermophysical properties
of materials. Additional sources of uncertainty in building
simulation, both systematic and random, were detailed by
Macdonald in 2002 [20].

Error values in the range of 4-8% are within industry standards.
For instance, the ASHRAE Guideline-14 suggests that calibrated
whole-building models (those where model input parameters and
control systems are varied, without regard to actual building
operating conditions, to reproduce measured results) should produce
error values within 5% to 15% [21]. As the DHC model attempts to
replicate actual building operating conditions, it was not artificially
calibrated; thus, slightly higher error values are acceptable.

3. Simulated strategies

This section describes the background of and motivations for
the energy efficiency strategies explored in this paper. Simulated

energy savings, carbon savings, and simple payback times are
calculated. Utility prices, input energy requirements, and emission
rates are taken as the 2008 DHC averages, shown below in Table 4
[16].

3.1. Heat recovery system for exhaust air

Treating MAU intake air requires significant energy input,
either for cooling in summer months or heating in the winter.
Preconditioned air is circulated through DHC and vented to the
surroundings through by two exhaust fans. At present, the
preconditioning input energy is essentially wasted when the air
is exhausted. A heat recovery system decreases this waste by
employing heat exchangers to reuse exhaust air in the precondi-
tioning of MAU intake air. Fig. 6 shows the DHC HVAC schematic,
updated to include a HR system.

This system was modeled in TRNSYS, using an air-to-air, tube
and shell heat exchanger with an effective area of 45 m?. The

Exhaust Air
0 & Primary 2
Recirculation Air P Makeup Air :
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Fig. 6. Flow chart of the DHC HVAC system, updated to include a heat recovery system.
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Table 2
Hourly probability of DHC occupancy.
Hour
1 2 3 4 5 6 7 8 9 10 11 12
Sunday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Monday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Tuesday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Wednesday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Thursday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Friday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Saturday 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.50 0.50 1.00
Hour
13 14 15 16 17 18 19 20 21 22 23 24
Sunday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Monday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Tuesday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Wednesday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Thursday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Friday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Saturday 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.25 0.25
Table 3 ) . ] is purely external, and preconditioned intake air is still subjected to
2/1[—?31—61 performance: simulated and metered annual utility consumption and model MAU and RAHU conditioning, the HR system has no effect on DHC
: environmental conditions. At the time of construction, a heat
Utility Simulated Metered Error recovery system would have cost on the order of $300k (2.7-year
Net electricity (GWh) 5.92 6.43 +7.9% simple payback). However, the additional costs of retrofitting the
MAU chilled water (10° ton-h) 431 4.57 +5.7% system to the building increase the estimated total cost to $480k,
RAHU chilled water (10° ton-h) 6.13 6.39 +4.1% and the simple payback time to 4.3 years.
MAU steam (10°1b) 6.77 6.28 ~7.8%
Dehumidifier steam (10°1b) 4.78 5.06 +5.5% . . .
3.2. Solar thermal preheating for desiccant dehumidifier
Table 4 o = MAU currently employs a desiccant wheel to dehumidify intake
Input energy, emission rates and costs of each DHC utility. air. The water in the intake air is absorbed by silica gel on the
Steam Chilled water  Electricity desiccant wheel; as the wheel spins, this water evaporates into the
Uiy (s b tonne-h Wh preheated regeneratlon air stream. Regenerat}on air is curreqtly
Input energy per utility unit (kJ) 1,305 490.7 3,600 preheated using steam. Solar thermal preheating of regeneration
Emissions per utility unit (kg) 0.155 0.053 0.40 air is a potential means of saving money and decreasing carbon
ggg;l?s;é‘““ty unit ‘(1$) A fg-(ﬁ; 000 foziz) 562 204(2)2 o7 emissions. A solar thermal system, using flat-plate solar collectors
usage (utility units) Faly ZHL Loyl at a fixed angle, was modeled. Since winter intake air does not
2008 DHC input energy (GJ) 21,453 609 23,141 . 2. . . .. o
2008 DHC CO, emissions (tonnes) 2,543 66 2,571 require humidification, the tilt angle was optimized at 38.5° for
2008 DHC cost ($) $338,674 $266,727 $591,383 summer collection (DHC is at latitude 43.5°). In order to achieve
significant energy savings, large collector areas are required. The
modeled system used 500 m? of collector area (roughly the area of
resulting annual steam savings were 3960 klb of steam ($81.6k). the building’s roof). Simulated annual steam savings from solar
The system also saves on cooling costs in the summer; simulated thermal preheating were 834 klb ($17.4k). The modeled system
annual chilled water savings were 135,500 tonne-h ($29.1k), and cost is estimated at $200k including collectors and installation
the total financial savings were thus $110.7k. Since the HR system costs; the simple payback time is therefore just under 12 years.
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Fig. 7. Relative humidity operating ranges of cleanrooms in the LBNL benchmarking database. DHC operating range is marked by the dashed red line [12]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of the article.)
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3.3. Increased relative humidity setpoint

In the recently preformed benchmarking report, DHC relative
humidity (RH) operating range was 37%. As shown in Fig. 7 [12],
this value is significantly lower than the RH operating range for
similar cleanrooms. An investigation was therefore conducted into
the possibility of increasing the RH setpoint as a means of saving
reheating energy.

While the building’s automatic monitoring system reports RH
values consistent with the 37% figure, stand-alone sensors in DHC
consistently measure RH values of 41-43%. This range places DHC
near the average RH of cleanrooms in the benchmarking database.
Since the permissible operating range for DHC equipment is 40—
45% RH, an increase in RH setpoint was deemed infeasible as it
might result in damage to expensive process equipment.

3.4. Improved lighting scheduling

Fig. 8 shows the simulated electricity consumption of DHC
HVAC systems, lighting and equipment. While the HVAC systems
consume the majority of DHC electricity, lighting and equipment
also constitute significant energy demands. The benchmarking
study placed DHC process equipment power consumption on the
high end of the database, suggesting potential improvements in
this area; however, equipment efficiency improvements were not
modeled due to inadequate precision in equipment power
consumption data.

No automatic lighting control systems are currently in place in
DHC. An occupancy-based control system, using the data from
Table 2, was modeled. This schedule assumes full lighting during
daytime hours and 20% chance of occupancy-based lighting during
the low-use hours of 1:00-7:00 AM. Simulations of this control
system predict a reduction in annual electricity usage of
37,000 kWh ($3.3k) with no significant impact on DHC tempera-
ture or RH conditions. Capital costs of installing occupancy-based
lighting controls in DHC are estimated at $5k; the simple payback
time is therefore 1.5 years.

3.5. Demand-controlled filtration

Low contaminant particle concentrations are essential to high
quality cleanroom processes. In order to maintain DHC’s Class 1000
particle concentration rating (fewer than 1000 particles >0.5 pm
per cubic foot of air), high ventilation rates are necessary. DHC
recirculation fans currently meet cleanliness standards by
operating at constant speeds 24 h per day, seven days per week,

Simulated DHC Electricity Breakdown

MAU fans
23%

Exhaust fans

Equipment
a% HVAC 20%
88%
Lighting RAHU fans
3% 45%

Fig. 8. Simulated DHC electricity consumption breakdown as percent of 5.92 GWh
per year total.

regardless of contaminant particle concentration. Fig. 9 shows the
operating speed of each recirculation fan as a percentage of its
maximum rated speed.

High, constant ventilation rates may be unnecessary for
maintaining desired DHC particle counts. Fig. 10 shows a typical
daily particle count profile based on measurements in the scanning
electron microscopy area of DHC. This profile is representative of
the DHC area at large. Since the power consumption of a fan varies
roughly as the cube of fan speed [17], modest reductions in fan
speeds could result in significant energy savings.

A past study of demand-controlled filtration (DCF) [18] has
shown 37-40% reductions in fan energy consumption when
cleanroom fan speeds are modulated based on contaminant
particle concentrations. In 2005, a DCF system was designed for
DHC [19]; however, this system has yet to be implemented due to
potential impacts on DHC environmental conditions.

DCF is typically implemented based on measurements taken
either from particle counters, which employ optical sensors to
sample actual contaminant particle concentrations in near real-
time, or occupancy sensors. Since people are the primary source of
cleanroom contamination [22], occupancy sensors provide an
indirect indication of particle concentration. Past studies have
shown little difference in energy savings when DCF is implemented
based on particle counters or occupancy sensors [18]. Additionally,
occupancy sensors are typically much less expensive than particle
counters and require less maintenance. Therefore, this study
focused on occupancy-based DCF as a simple and effective means
of reducing recirculation fan electricity consumption.

Three overnight DCF scenarios were simulated, based on the
empirical occupancy data in Table 2. In the first scenario, fan
speeds were reduced from their full daytime values (Fig. 9) to 70%

Current RAHU Fan Speeds

Percent of Rated Maximum Speed

123456 7 8 910111213141516171819202122232425

RAHU Number

Fig. 9. Operating speeds of recirculation fans, as a percentage of their maximum speed. All fans currently operate at constant speeds.
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Fig. 10. Representative daily particle count profile for the zone controlled by the
first recirculation air handling unit, in particles per ft>. For reference, processes in
this zone require 1000 or fewer particles per ft>.

of that value over the course of 1 h, then maintained at 70% for the
low-occupancy hours of 1:00-7:00 AM. A random variable based
on occupancy probability was used in the nighttime hours to
model occupancy-based fan speed increases. The second and third
scenarios are similar, but reduce nighttime fan speeds to 60% and
50% of daytime values, respectively. Table 5 shows the annual
electricity and financial savings of each DCF scenario.

One full-day DCF scenario was simulated for comparison. In
this scenario, a random variable based on occupancy probability
was used for all hours of the day. Fan speeds were gradually
decreased to 50% of their current speeds (Fig. 9) when that
variable was zero, i.e. during times of simulated DHC vacancy. This
scenario resulted in simulated annual electricity savings of
550,000 kWh ($49.5k).

Since a particle count-based DCF system has already been
installed in DHC, the cost of implementing occupancy-based DCF
is reduced to labor, occupancy sensors and miscellaneous
electronics. The estimated total cost is therefore $11k, and
simple payback times are under 6 months for all three DCF
scenarios. In the case of assembling a DCF system from scratch,
the capital costs are estimated at $167k [19] and simple
paybacks are 3-7 years depending on the fan speed reduction
scenario employed.

4. Results

Strategies that resulted in simple payback times under 5 years
were recommended for implementation. Thus, the solar thermal
preheating system for MAU intake air was dismissed, although
simulations suggest it would save significant amounts of energy
and CO, emissions. Additionally, an increase in the DHC relative
humidity setpoint was deemed infeasible, since it would have
adverse effects on DHC process equipment. The recommended
strategies, in order of ascending simple payback times, are:
demand-controlled filtration, a heat recovery system for exhaust
air, and improved lighting controls. Figs. 11-13 show the energy,
carbon and economic impacts of the recommended strategies. The

Table 5

Electricity and financial savings of DCF scenarios.
Overnight Electricity Financial
reduction (%) savings (kWh/yr) savings ($/yr)
30 240,000 21,600
40 290,000 26,100
50 350,000 31,500

DHC Cost of Energy
$1,250,000 T
$1,000,000
5
~
L $750,000
&
E ¥ Electricity
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S0
Baseline DCF+ HR DCF+HR +
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Fig. 11. Reductions in DHC energy use.
DHC Carbon Emissions
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Fig. 12. Reductions in DHC carbon emissions.

simulated net savings of the three recommended strategies
amount to 9 TJ/yr (14.9%), a reduction in carbon emissions of
860 tonne/yr (16.6%), and a reduction in the total cost of energy of
$164k/yr (13.7%).

DHC Energy Use
60,000
50,000

40,000

¥ Electricity
¥ Heating

30,000 -

Energy Use (GJ/yr)

- ;
20,000 Cooling

10,000

DCF DCF+HR DCF+HR+
Lights

Baseline

Fig. 13. Reductions in DHC energy cost.
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5. Conclusions

In this study, a TRNSYS model of a large cleanroom situated
within a nanoscience research facility was developed. The study
aimed to identify and assess the efficacy of cleanroom energy
efficiency strategies. The model was validated by comparing a full-
year simulation of the cleanroom’s electricity, steam and chilled
water consumption with the 2008 metered values; error values of
under 8% were achieved in all fields.

Once validated, the model was used to simulate the economic
and environmental benefits of four cleanroom energy efficiency
strategies: a heat recovery system, which uses exhaust air to
precondition intake air to the makeup air handling unit; solar
thermal preheating of intake air; improved lighting and equipment
scheduling; and demand-controlled filtration, which modulates
recirculation air handling unit fan speeds in response to varying
levels of cleanroom particulate contamination. While the simulated
strategies all save energy and decrease carbon emissions, they are
not all economically viable. For instance, the 12-year simple payback
time on the solar thermal preheating system for desiccant
regeneration air is unattractive in upstate New York. However, in
sunnier regions such as California and Texas (the top two states in
terms of total cleanroom area), such a system would be more
practical. For the purposes of this study, energy efficiency strategies
with simple payback times under 5 years are considered viable.

The following strategies are recommended for DHC: full-day
demand-controlled filtration (under 6-month payback), exhaust
heat recovery (4.3-year payback), and improved lighting controls
(1.5-year payback). Implementing all three of the recommended
strategies would result in energy savings of 9 TJ/yr (14.9%), a
reduction in carbon emissions of 860 tonne/yr (16.6%), and a
reduction in the total cost of energy of $164Kk/yr (13.7%).

The energy efficiency strategies identified in this study are not
only applicable to DHC, but may be generalized to cleanroom space
at large. For instance, demand-controlled filtration is a little-
employed strategy with great energy efficiency potential. Further-
more, this study considered only retrofit strategies; greenfield
projects could employ other strategies such as improved insula-
tion, daylighting, and (situationally) radiant cooling. If the energy
efficiency of the entire U.S. cleanroom sector could be improved in
line with the results of this study, significant reductions in CO,
emissions could be achived. To wit: assuming the average carbon
intensity of U.S. cleanroom space is on par with that of DHC,
generalization of the strategies recommended in this paper could
save on the order of 1.5 million tonnes of CO, emissions annually.
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