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Abstract— Buildings with thermal storage use it mainly to
shift cooling loads. Ice or chilled water is produced when
electricity prices are low and stored to provide cooling when
prices are high. While this price-based load shifting has value
for power system operators, buildings with thermal storage
could provide more direct grid services by reacting to demand
charges and demand response calls. In this paper, we consider
the problem of cooling a building under these incentives.
The context is a New York City office building with passive
and active thermal storage, subject to Consolidated Edison’s
(ConEd’s) default rate plan for large commercial buildings. This
rate plan includes a three-tiered demand charge and hourly
energy prices determined by the system operator’s day-ahead
dispatch. We also model a ConEd demand response program,
and consider the thermal comfort of building occupants. The
problem is formulated in the language of stochastic optimal
control and solved approximately using model predictive control
(MPC). Extending previous work on MPC of thermal storage,
which has focused on dynamic energy prices, we include the
full set of economic incentives directly in the stage and terminal
costs. Simulations of the hottest day of 2013 demonstrate the
value of realistic economic modeling. They also highlight an
interesting tension between the various incentives, which all
compete for shiftable load.

I. INTRODUCTION

In electric power systems, hours of peak demand carry
disproportionately high social costs. Because power plants
are dispatched in order of ascending marginal cost, energy
from the plants that come online to meet system peaks is
the most expensive. Additionally, in systems with capacity
markets, grid operators must procure enough capacity each
year to meet the forecasted peak demand. This often means
paying for the ongoing availability of peaking plants that
are only dispatched a few hundred hours per year. Peaking
plants also raise public health concerns, as they tend to emit
pollutants at high rates and at times of already poor air
quality.

Recently, system operators have turned to demand-side
resources to mitigate the costs of system peaks. Demand
response programs, which encourage consumers to curtail
load when the grid is stressed, allow system operators to
procure less generation capacity, and to dispatch peaking
plants less often. A recent FERC study estimates that U.S.
system operators have 28.3 GW of registered demand re-
sponse capacity, equivalent to about 750, 75-MW peaking
plants. [1]

System peaks typically occur during the hottest hours of
the year, driven by residential and commercial air condition-
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ing. Therefore, cooling loads are valuable demand response
resources. To building operators, however, curtailing cooling
systems during hot hours risks compromising occupants’
thermal comfort. By reducing this risk, thermal storage could
play an important role in expanding the pool of demand
response resources.

Thermal storage is a mature technology that has been used
for decades to shift cooling loads in commercial buildings. A
typical thermal storage system consists of an insulated tank
and a chiller that fills it with ice or cold water. The capital
costs of thermal storage are estimated at 14-20 $/kWhth [2],
significantly lower than those of electrochemical storage1,
which (for lithium-ion batteries) are in the 500-600 $/kWh
range [3].

Most building operators with thermal storage systems
control them with heuristics such as storage-priority, chiller-
priority or constant-proportion control. [4] Although these
heuristics have been shown to perform well under time-
of-use rate plans, they are becoming outdated as building
operators face increasingly complex economic environments.
Optimization-based control methods are better equipped to
negotiate the trade-offs between competing incentives such
as dynamic energy prices, multi-tiered demand charges,
demand response revenues, and occupant thermal comfort.

MPC is one such optimization-based method that is widely
used in building control problems. [5] MPC was first applied
to thermal storage by Henze et al. in 1997. [6] Modeling
a chiller and tank as a SISO LTI system, the authors
showed that under dynamic energy prices, MPC significantly
outperforms the previously mentioned heuristics. In the last
eighteen years, this work has been extended to make use
of a building’s passive thermal mass [7], [8]; to incorporate
building simulation tools such as EnergyPlus and TRNSYS
[8]; to actuate temperature setpoints and mass flow rates [9];
and to handle on/off chiller constraints [10].

While extensive, this body of work has, with a few excep-
tions, paid little attention to several key objectives that arise
in real-world building operations. Perhaps the most important
of these is the demand charge that many large commercial
buildings face. Demand charges penalize a building’s peak
power consumption over a monthly billing period. These

1The subscript “th” in kWhth is included to emphasize that thermal
energy, rather than electrical energy (kWh), is measured. We adopt this
convention throughout the paper. The thermal energy evacuated by a chiller
and the electrical energy required to do so are related by the chiller’s
coefficient of performance. For example, a typical ice-making chiller has
a coefficient of performance of 2.5-3, so a thermal storage cost of 14-20
$/kWhth is loosely equivalent to an electric storage cost of 35-60 $/kWh.



charges couple decisions across long stretches of time, posing
modeling and computational challenges.

In 2008, Henze et al. addressed the demand charge, in the
absence of thermal storage, by applying the Nelder-Mead
heuristic method to nonconvex MPC with embedded TRN-
SYS simulation. [11] More recently, Ma et al. handled the
demand charge directly (again for a building without thermal
storage) in a linear program. [12] Applying this method to a
commercial building with dynamic energy prices, Ma et al.
demonstrated 3-28% savings in weekly energy costs relative
to several heuristics.

In this paper, we use the framework of convex optimization
to include a multi-tiered demand charge and the other objec-
tives of a challenging economic environment in an algorithm
for MPC of thermal storage. We apply the algorithm to a New
York City commercial building operating under ConEd’s
default rate plan and a ConEd demand response program.
[14] For more discussion of this rate plan and demand
response program, see [15].

This paper is organized as follows. In §II, we develop
models of the building physics and the economic incentives.
Control algorithms are presented in §III, and §IV describes
the simulation parameters and results. We conclude with
some discussion in §V.

II. MODELS

Our primary focus is on detailed economic modeling. We
base the physical model on the one presented in [6], extended
to include a second chiller, chiller ramping limits, time-
varying coefficients of performance, and non-ideal storage
and heat exchanger efficiencies. The resulting model is a
perfectly observed MIMO stochastic system with linear,
time-varying dynamics.

In the sequel, the variable k indexes the set T =
{0, . . . , N − 1}, were N = T/∆t is the number of discrete
time steps of length ∆t (hours) in the control horizon T . In
this paper, we take T = 24 h, although with minor revisions
the horizon could be extended to a month or a cooling season.

A. Physics

Let x1(k) be the charge state of the ice tank (kWhth),
bounded above by the capacity x̄1. Let x2(k) be the build-
ing’s cooling deficit (kWhth), i.e., the sum of all unmet
cooling load from previous stages. Note that x2(k) may be
negative, for instance if the building is pre-cooled overnight.

Let u1(k) be the power allocated to making ice (kW), let
u2(k) be the cooling load met by melting ice (kWth), and
let u3(k) be the power consumed by the main chiller (kW).
For each ui(k), i ∈ {1, 2, 3}, define the maximum operating
point ūi ≥ 0 and the maximum ramp ∆ūi.

To enforce the ramping constraint, we append u(k−1) to
the state, defining x(k) = [x1(k), x2(k),u(k − 1)T ]T . This
gives the state constraint x(k) ∈ X = [0, x̄1] ×R4 and the
control constraint u(k) ∈ U(x(k)), where

U(x(k)) =
{

u ∈ R3
∣∣∣ ui ∈ [0, ūi], |ui − xi+2(k)| ≤ ∆ūi

}
.

Let w1(k) be the building’s cooling demand (kWth), and
let w2(k) be the rest of the building’s electrical demand
(kW): lighting, plug loads, and so on. We assume that the
disturbance w(k) = [w1(k), w2(k)]T is jointly normal and
white,

w(k) ∼ N (w̄(k),Σ(k))

E
[
(w(j)− w̄(j))(w(k)− w̄(k))T

]
= δjkΣ(k).

We also assume that the building operator has accurate
knowledge at stage 0 of w̄(k) and Σ(k) for all k ∈ T .

Given these definitions, the state evolves according to

x1(k + 1) = βx1(k) + κice(k)u1(k)∆t− u2(k)∆t/η

x2(k + 1) = x2(k) + [w1(k)− u2(k)− κmain(k)u3(k)]∆t

xi(k + 1) = ui−2(k), i ∈ {3, 4, 5}
or more compactly,

x(k + 1) = Ax(k) +B(k)u(k) +Gw(k)

where A ∈ R5×5, B(k) ∈ R5×3, and G ∈ R5×2.
In the above, β ∈ [0, 1] is the ice retention rate, η ∈ [0, 1]

is the efficiency of heat exchange between the tank and
building, and κice(k) and κmain(k) are the coefficients of
performance of the ice chiller and main chiller, respectively.
The time dependence allows the chiller coefficients of per-
formance to vary with outdoor temperature.

We assume that the controller has perfect knowledge of
x(k) at stage k, though a Kalman filter could be added to
estimate noisy or unmeasured states.

B. Economics
Letting ce(k) be the price of energy ($/kWh) and p(k) =

u1(k) + u3(k) + w2(k) be the net power consumption, the
energy cost is

ge(k,u(k),w(k)) = ce(k)p(k)∆t.

Each day’s energy prices ce(k) are published the previous
day at 4 PM, so for a 24 hour simulation they are known
deterministically.

For i ∈ {1, 2, 3}, let Ti ⊆ T be the set of stages subject
to the ith tier of the demand charge, and let p̄i(k) be the
maximum power consumed in the ith tier of the demand
charge prior to stage k, i.e., on Ti ∩ {0, . . . , k − 1}. The
variable p̄i(0) is initialized with the ith peak demand in the
month so far or, if k = 0 is the start of the month, with a
target demand limit based on historical data. Each p̄i obeys
the dynamics

p̄i(k + 1) =

{
max{p̄i(k), p(k)}, k ∈ Ti
p̄i(k), k /∈ Ti.

Let cd(Ti) ≥ 0 be the demand price ($/kW) over Ti. Then
the increase in the three-tiered demand charge between stages
k1 and k2 ≥ k1 is

gd

(
{u(k),w(k)}k2k=k1

)
=

3∑
i=1

cd(Ti)
(
−p̄i(k1) + max

k∈Ti∩{k1,...,k2}
p(k)

)+



where (·)+ denotes the positive part, max{0, ·}. In the
special case k1 = 0 and k2 = N − 1, the function
gd ({u(k),w(k)}k∈T ) gives the amount by which the de-
mand charge increases over the entire control horizon.

In order to avoid under- or over-cooling, one could impose
the constraint that the cooling demand be met exactly at all
stages, but this would preempt desirable strategies like pre-
cooling. Instead, we impose a quadratic penalty on deviations
of the delivered cooling from the desired cooling:

gu(k,x(k)) = cu(k)x2(k)2.

Here cu(k) > 0, the price of unmet cooling load
($/(kWhth)2), is modeled as proportional to the building’s
occupancy at stage k and inversely proportional to its thermal
mass.

The demand response program modeled in this paper
pays participants a flat price cdr ($/kWh) for avoided en-
ergy consumption during the demand response window Tdr,
announced by the utility 21 hours in advance. This motivates
the cost

gdr({u(k),w(k)}k∈Tdr
) = −cdr∆t

∑
k∈Tdr

[p̂(k)− p(k)]

where p̂(k) is the baseline power consumption (kW) at
stage k, as computed by the demand response program
administrator.

To discourage tank depletion from day to day, we also
impose the cost

gt(x(N)) = ct (x1(0)− x1(N))
+

where the initial state x(0) is given and ct ($/kWhth) is a
tunable parameter.

The net stage cost is the sum of the costs of energy and
unmet cooling load:

gk(x(k),u(k),w(k)) = ge(k,u(k),w(k)) + gu(k,x(k)).

The terminal cost is the sum of the costs of demand,
demand response, and tank depletion:

gN (x(N), {u(k),w(k)}k∈T ) = gd ({u(k),w(k)}k∈T )

+ gdr({u(k),w(k)}k∈Tdr
) + gt(x(N)).

C. The stochastic optimal control problem
Given an initial state x0, the total expected cost of a par-

ticular policy π = {µ0, ...,µN−1}, where u(k) = µk(x(k)),
is

Jπ(x0) = E

[
gN (x(N), {u(k),w(k)}k∈T )

+

N−1∑
k=0

gk(x(k),u(k),w(k))

]
where the expectation is taken over w(k) for all k ∈ T . The
stochastic optimal control problem is therefore

min
π

Jπ(x0)

s.t. x(k + 1) = Ax(k) +B(k)u(k) +Gw(k)

x(k + 1) ∈ X
u(k) ∈ U(x(k))

(1)

where the constraints apply for all k ∈ T .

III. ALGORITHMS

Two algorithms are used in this paper: open-loop optimal
control (OLOC) and MPC.

A. Open-loop optimal control

To solve a deterministic problem by OLOC, we use the
system dynamics to write all states in terms of the previous
controls. The resulting problem of minimizing the future
costs can be solved offline, simultaneously producing all
future states and controls.

We use OLOC for three purposes. First, the demand
response baseline2 is produced at stage 0 by OLOC with the
assumption of certainty equivalence, i.e., that all disturbance
realizations will equal their expected values. Second, OLOC
is used to compute the optimal policy under the oracle
information pattern, where all disturbance realizations are
known perfectly at stage 0. The oracle policy is not causal,
and therefore cannot be implemented in practice. However,
it gives a useful lower bound on the cost of daily operations:
no causal policy can outperform the oracle. Finally, OLOC
is used at each MPC iteration.

B. Model predictive control

The MPC policy is computed implicitly at each stage
through online convex optimization. At stage k, a cer-
tainty equivalent OLOC problem is solved for the controls
u(k), . . . ,u(k + L − 1), where L = min{H,N − k} and
H ≤ N is the MPC horizon. Only the first control is
implemented, then the system is allowed to evolve according
to the true, stochastic dynamics and the process is repeated.
The truncated horizon and certainty equivalence assumption
make MPC suboptimal for Problem (1).

IV. SIMULATION

In order to explore the control problem in a realistic
economic environment, we conduct Monte Carlo simulation
of a New York City building operating under the ConEd
rate structures introduced in §II. The simulation day is July
18, the hottest day of 2013 in New York City. Due to the
spike in air conditioning loads, demand in the New York
State grid reached a record high. The wholesale energy
prices in New York City rose to 29.4 ¢/kWh, about an order
of magnitude higher than typical. [16] Demand response
resources were dispatched system-wide; we assume that the
simulated building was called upon to reduce load from 2 to
6 PM. The prices of energy, demand, demand response and
under- or over-cooling for the simulation day are shown in
Figure 1.

The building studied is the “Large Office” prototype
available in [17], a 3-story, 14,200 m2 office building
with occupancy, lighting and plug load schedules following

2In practice, ConEd computes each hour’s baseline by averaging past
consumption in the same hour of a number of similar days. The OLOC
method is nonstandard, but captures the intent of approximating the energy
that would have been used, absent a demand response event.



Table 1: Time-Invariant Simulation Parameters
Quantity Units Value
Control duration, T hours 24
Time step, ∆t hours 0.5
MPC horizon, H - 48
Tank capacity, x̄1 kWhth 1,760
Maximum ice chiller power, ū1 kW 94
Maximum ice chiller ramp, ∆ū1 kW 70.5
Maximum ice melt per stage, ū2 kWth 510
Maximum ice melt ramp, ∆ū2 kWth 510
Maximum main chiller power, ū3 kW 73
Maximum main chiller ramp, ∆ū3 kW 54.75
Tank depletion penalty, ct $/kWhth 0.18
Ice retention rate, β - 0.98
Ice extraction efficiency, η - 0.9
Initial peak demand (all hours), p̄1(0) kW 200
Initial peak demand (8 AM - 10 PM), p̄2(0) kW 200
Initial peak demand (8 AM - 6 PM), p̄3(0) kW 200
Initial state, (x1(0), x2(0)) kWhth (176, 0)
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Fig. 1. Prices vs. time. The top plot shows that the demand response price
cdr = 3 $/kWh exceeds the maximum energy price of 0.328 $/kWh by
nearly an order of magnitude. The middle plot shows the off-peak, shoulder
and peak tiers of the demand charge (T1, T2 and T3, respectively) and
prices. Note that T3 ⊂ T2 ⊂ T1, so if the peak demand occurs on T3 it
costs the building operator cd(T1) + cd(T2) + cd(T3) = 39.54 $/kW. The
bottom plot shows the price of under- or over-cooling, which varies with
building occupancy (hence the decrease over the lunch hour).

ASHRAE Standard 90.1. In order to estimate cooling loads,
other electrical loads and chiller coefficients of performance,
the building was simulated in TRNSYS under a variety of
weather conditions. A regression model was developed to
relate the desired quantities to time of day, day of week and
outdoor air temperature. The values of the static physical
parameters are given in Table 1. Figure 2 shows the time-
varying parameters.

It can be shown that all of the cost and constraint functions
defined in §II are convex in the controls, so the optimization
problems discussed in §III are also convex. The optimization
runs are done in CVX [18], [19], calling the SDPT3 solver.
[20], [21] An OLOC problem takes about six seconds to run
on a 2.8 GHz Intel Xeon processor. A 24-hour MPC simu-
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Fig. 2. Time-varying physical parameters. The top plot shows that the
simulation day is particularly hot, with temperature peaking at 36.7 ◦C
(98.1 ◦F). The coefficients of performance of both chillers decrease as the
temperature increases, which encourages ice-making overnight. Note that
the ice chiller is about 25% less efficient than the main chiller. The bottom
plot uses two axes to distinguish thermal from electrical power.

lation with half-hour time steps takes about three minutes.
Figure 3 shows the states and controls under the MPC

policy for a particular Monte Carlo run. Figure 4 shows the
total power and costs under the MPC policy, along with the
baseline and the power the building would have consumed
if it had no thermal storage. Figure 5 shows cost histograms
of the oracle and MPC policies for 200 Monte Carlo runs.
Figure 6 shows the power and cost profiles under the MPC
policy, with and without including the demand charge in the
objective function. Please see the figure captions for details.

V. DISCUSSION

In this paper, we studied the problem of controlling
cooling systems under dynamic energy prices, a multi-tiered
demand charge, and a demand response program. To our
knowledge, this is the first paper to apply MPC to a building
under all three objectives. We demonstrated that MPC can
successfully navigate the trade-offs inherent in this complex
– and really existing – economic environment. This result
is enabled by the framework of convex optimization, which
admits objectives that, compared to the linear and quadratic
costs often used in MPC, more accurately reflect the true
economic incentives. As Figures 5 and 6 demonstrate, the
value of accurate economic modeling can be substantial.

A second conclusion, relevant to utility regulators and
system operators, is that the dynamic energy prices, the
demand charge, and the demand response call fight each
other for flexible load. Each of these incentives is intended,
at least in part, to encourage building operators to shift
load away from hours of peak system demand. As Figure 4
shows, however, the midday energy prices are high enough
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Fig. 3. States and controls under the MPC policy. Plots 2 and 5 show that
the building is allowed to drift overnight when occupancy is low. Around
3 AM, both chillers turn on (plots 3 and 5) to fill the ice tank (plot 1) and
cool the building back down (plot 2). During the demand response event
(hours 14 to 18 in plots 3-5), both chillers are turned off and all cooling is
provided by melting ice.
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that neglects the demand charge incurs an average cost increase of 61%
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to prompt full curtailment of the main chiller, even without
a demand response call. This significantly decreases the
amount of cooling load that can be curtailed during the
demand response event. In Figure 6, a similar tension can be
seen between the demand charge and the demand response
call. With no demand charge, MPC discovers two strategies
between 10 AM and 2 PM: it pre-cools the building, and it
refills the ice tank. These strategies enable more curtailment
during the 2 PM to 6 PM demand response event, but require
that both chillers work at full capacity, causing a spike in
demand. With the demand charge in place, the cost of this
spike is prohibitive, so the building is not pre-cooled and
the tank is not refilled. A rate structure with less internal
conflict would make the building easier to control and more
responsive to system needs.

An obvious extension of this work is sensitivity analysis.
As the tank size x̄1 increases, for example, the trade-offs
between the competing economic incentives become less
pronounced. This raises the interesting question of optimal
tank sizing. For another example, as the covariance matrices
Σ(k) decrease in norm, the cost of the MPC policy also
decreases until, in the limiting case of degenerate distur-
bances, the oracle and MPC policies agree exactly. In other
words, better load predictions give better controllers. Load
prediction, which involves both thermal modeling of the
building and stochastic modeling of weather and occupant
behavior, is not a trivial problem. Quantifying the sensitivity
to Σ(k) could help building operators decide how much to
invest in load prediction.

Another direction for improvement is the physical model
developed in §II-A, which is a quasi-steady-state approxi-
mation of the underlying chiller and storage dynamics. This
approximation, while valid for the long time steps in this
paper, worsens as the time step decreases and the nonlinear
chiller dynamics become significant. Additional complica-
tions arise from the chiller coefficients of performance, which
vary nontrivially with chiller load. In practice, chillers are
typically allowed either to be off or within some range [u, ū],
where u > 0. These nonconvex constraints would require an
appropriate convex relaxation.

There are other extension opportunities. Increasing the
simulation horizon to a month or a cooling season would
enable more rigorous analysis of the effects of realistic
economic modeling. Initialization schemes for the target
demand limits p̄i could be compared. Other mechanisms for
providing grid services, such as critical peak pricing, ancil-
lary service markets, or contracts with aggregators, could be
explored. Finally, while the MPC algorithm presented in this
paper appears to give a good solution to Problem 1, it is
suboptimal for the reasons discussed in §III-B. This raises
the question of whether a different algorithm might more
closely approximate the optimal causal policy.
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